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Deep networks are now able to achieve human-level performance
on a broad spectrum of recognition tasks. Independently, neuromorphic
computing has now demonstrated unprecedented energy-efficiency
through a new chip architecture based on spiking neurons, low
precision synapses, and a scalable communication network. Here, we
demonstrate that neuromorphic computing, despite its novel archi-
tectural primitives, can implement deep convolution networks that
(i) approach state-of-the-art classification accuracy across eight stan-
dard datasets encompassing vision and speech, (ii) perform inference
while preserving the hardware’s underlying energy-efficiency and
high throughput, running on the aforementioned datasets at between
1,200 and 2,600 frames/s and using between 25 and 275 mW (effec-
tively >6,000 frames/s per Watt), and (iii) can be specified and
trained using backpropagation with the same ease-of-use as con-
temporary deep learning. This approach allows the algorithmic
power of deep learning to be merged with the efficiency of neuro-
morphic processors, bringing the promise of embedded, intelligent,
brain-inspired computing one step closer.
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The human brain is capable of remarkable acts of perception
while consuming very little energy. The dream of brain-in-

spired computing is to build machines that do the same, re-
quiring high-accuracy algorithms and efficient hardware to run
those algorithms. On the algorithm front, building on classic
work on backpropagation (1), the neocognitron (2), and con-
volutional networks (3), deep learning has made great strides in
achieving human-level performance on a wide range of recog-
nition tasks (4). On the hardware front, building on foundational
work on silicon neural systems (5), neuromorphic computing, using
novel architectural primitives, has recently demonstrated hardware
capable of running 1 million neurons and 256 million synapses for
extremely low power (just 70 mW at real-time operation) (6).
Bringing these approaches together holds the promise of a new
generation of embedded, real-time systems, but first requires
reconciling key differences in the structure and operation between
contemporary algorithms and hardware. Here, we introduce and
demonstrate an approach we call Eedn, energy-efficient deep
neuromorphic networks, which creates convolutional networks
whose connections, neurons, and weights have been adapted to
run inference tasks on neuromorphic hardware.
For structure, typical convolutional networks place no con-

straints on filter sizes, whereas neuromorphic systems can take
advantage of blockwise connectivity that limits filter sizes,
thereby saving energy because weights can now be stored in
local on-chip memory within dedicated neural cores. Here, we
present a convolutional network structure that naturally maps
to the efficient connection primitives used in contemporary
neuromorphic systems. We enforce this connectivity constraint
by partitioning filters into multiple groups and yet maintain
network integration by interspersing layers whose filter support
region is able to cover incoming features from many groups by
using a small topographic size (7).

For operation, contemporary convolutional networks typi-
cally use high precision (≥32-bit) neurons and synapses to
provide continuous derivatives and support small incremental
changes to network state, both formally required for back-
propagation-based gradient learning. In comparison, neuro-
morphic designs can use one-bit spikes to provide event-based
computation and communication (consuming energy only
when necessary) and can use low-precision synapses to co-
locate memory with computation (keeping data movement
local and avoiding off-chip memory bottlenecks). Here, we
demonstrate that by introducing two constraints into the
learning rule—binary-valued neurons with approximate de-
rivatives and trinary-valued (f−1,0,1g) synapses—it is possible
to adapt backpropagation to create networks directly imple-
mentable using energy efficient neuromorphic dynamics. This
approach draws inspiration from the spiking neurons and low-
precision synapses of the brain (8) and builds on work showing
that deep learning can create networks with constrained con-
nectivity (9), low-precision synapses (10, 11), low-precision
neurons (12–14), or both low-precision synapses and neurons
(15, 16). For input data, we use a first layer to transform
multivalued, multichannel input into binary channels using
convolution filters that are learned via backpropagation (12,
16) and whose output can be sent on chip in the form of
spikes. These binary channels, intuitively akin to independent

Significance

Brain-inspired computing seeks to develop new technologies that
solve real-world problems while remaining grounded in the
physical requirements of energy, speed, and size. Meeting these
challenges requires high-performing algorithms that are capable
of running on efficient hardware. Here, we adapt deep convolu-
tional neural networks, which are today’s state-of-the-art ap-
proach for machine perception in many domains, to perform
classification tasks on neuromorphic hardware, which is today’s
most efficient platform for running neural networks. Using our
approach, we demonstrate near state-of-the-art accuracy on eight
datasets, while running at between 1,200 and 2,600 frames/s and
using between 25 and 275 mW.

Author contributions: S.K.E., P.A.M., J.V.A., R.A., and D.S.M. designed research; S.K.E., P.A.M.,
J.V.A., A.S.C., R.A., A. Andreopoulos, D.J.B., J.L.M., T.M., D.R.B., C.d.N., P.D., A. Amir, B.T., and
M.D.F. performed research; S.K.E. contributed new reagents/analytic tools; S.K.E., P.A.M.,
J.V.A., A.S.C., R.A., and A. Andreopoulos analyzed data; and S.K.E., P.A.M., A.S.C., and D.S.M.
wrote the paper.

Conflict of interest statement: All authors are employees of IBM Research.

This article is a PNAS Direct Submission. K.M. is a Guest Editor invited by the Editorial
Board.

Freely available online through the PNAS open access option.

See Commentary on page 11387.
1To whom correspondence should be addressed. Email: sesser@us.ibm.com.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1604850113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1604850113 PNAS | October 11, 2016 | vol. 113 | no. 41 | 11441–11446

CO
M
PU

TE
R
SC

IE
N
CE

S
SE

E
CO

M
M
EN

TA
RY

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
13

, 2
02

1 

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1604850113&domain=pdf
mailto:sesser@us.ibm.com
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604850113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604850113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1604850113


www.manaraa.com

components (17) learned with supervision, provide a parallel
distributed representation to carry out high-fidelity computa-
tion without the need for high-precision representation.

Critically, we demonstrate that bringing the above innovations
together allows us to create networks that approach state-of-the-art
accuracy performing inference on eight standard datasets, running on
a neuromorphic chip at between 1,200 and 2,600 frames/s (FPS),
using between 25 and 275 mW. We further explore how our ap-
proach scales by simulating multichip configurations. Ease-of-use is
achieved using training tools built from existing, optimized deep
learning frameworks (18), with learned parameters mapped to
hardware using a high-level deployment language (19). Although we
choose the IBM TrueNorth chip (6) for our example deployment
platform, the essence of our constructions can apply to other
emerging neuromorphic approaches (20–23) and may lead to new
architectures that incorporate deep learning and efficient hardware
primitives from the ground up.

Approach
Here, we provide a description of the relevant elements of deep
convolutional networks and the TrueNorth neuromorphic chip
and describe how the essence of the former can be realized on
the latter.

Deep Convolutional Networks. A deep convolutional network is a
multilayer feedforward neural network, whose input is typi-
cally image-like and whose layers are neurons that collectively

A

B

C

D

Fig. 1. (A) Two layers of a convolutional network. Colors (green, purple, blue,
orange) designate neurons (individual boxes) belonging to the same group (par-
titioning the feature dimension) at the same location (partitioning the spatial di-
mensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board)
comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic
array. Convolutional network neurons for one group at one topographic location
are implemented using neurons on the same TrueNorth core (TrueNorth neuron
colors correspond to convolutional network neuron colors in A), with their corre-
sponding filter support region implemented using the core’s inputs, and filter
weights implemented using the core’s synaptic array. (C) Neuron dynamics show-
ing that the internal state variable V(t) of a TrueNorth neuron changes in response
to positive and negative weighted inputs. Following input integration in each tick,
a spike is emitted if V(t) is greater than or equal to the threshold θ= 1. V(t) is reset
to 0 before input integration in the next tick. (D) Convolutional network filter
weights (numbers in black diamonds) implemented using TrueNorth, which
supports weights with individually configured on/off state and strength assigned
by lookup table. In our scheme, each feature is represented with pairs of neuron
copies. Each pair connects to two inputs on the same target core, with the inputs
assigned types 1 and 2, which via the look up table assign strengths of +1 or −1
to synapses on the corresponding input lines. By turning on the appropriate
synapses, each synapse pair can be used to represent −1, 0, or +1.

Table 1. Structure of convolution networks used in this work

1/2 chip 1 chip 2 chip 4 chip

S-12 S-16 S-32 S-64
P4-128 (4) P4-252 (2) S-128 (4) S-256 (8)
D N-256 (2) N-128 (1) N-256 (2)
S-256 (16) P-256 (8) P-128 (4) P-256 (8)
N-256 (2) S-512 (32) S-256 (16) S-512 (32)
P-512 (16) N-512 (4) N-256 (2) N-512 (4)
S-1020 (4) N-512 (4) P-256 (8) P-512 (16)
(6,528/class) N-512 (4) S-512 (32) S-1024 (64)

P-512 (16) N-512 (4) N-1024 (8)
S-1024 (64) P-512 (16) P-1024 (32)
N-1024 (8) S-2048 (64) S-2048 (128)
P-1024 (32) N-2048 (16) N-2048 (16)
N-1024 (8) N-2048 (16) N-2048 (16)
N-1024 (8) N-2048 (16) N-2048 (16)
N-2040 (8) N-4096 (16) N-4096 (16)
(816/class) (6,553/class) (6,553/class)

Each layer is described as type-features (groups), where type can be S for spatial
filter layers with filter size 3× 3 and stride 1, N for network-in-network layers with
filter size 1×1 and stride 1, P for convolutional pooling layer with filter size 2× 2
and stride 2, P4 for convolutional pooling layer with filter size 4× 4 and stride 2, and
D for dropout layers. The number of output features assigned to each of the 10
CIFAR10 classes is indicated below the final layer as (features/class). The eight-chip
network is the same as a four-chip network with twice as many features per layer.

Table 2. Summary of datasets

Dataset Classes Input Description

CIFAR10 (26) 10 32 row × 32 column × 3 RGB Natural and manufactured objects in their environment
CIFAR100 (26) 100 32 row × 32 column × 3 RGB Natural and manufactured objects in their environment
SVHN (27) 10 32 row × 32 column × 3 RGB Single digits of house addresses from Google’s Street View
GTSRB (28) 43 32 row × 32 column × 3 RGB German traffic signs in multiple environments
Flickr-Logos32 (29) 32 32 row × 32 column × 3 RGB Localized corporate logos in their environment
VAD (30, 31) 2 16 sample × 26 MFCC Voice activity present or absent, with noise (TIMIT + NOISEX)
TIMIT class (30). 39 32 sample × 16 MFCC × 3 delta Phonemes from English speakers, with phoneme boundaries
TIMIT frame (30) 39 16 sample × 39 MFCC Phonemes from English speakers, without phoneme boundaries

GTSRB and Flickr-Logos32 are cropped and/or downsampled from larger images. VAD and TIMIT datasets have Mel-frequency cepstral coefficients (MFCC)
computed from 16-kHz audio data.

11442 | www.pnas.org/cgi/doi/10.1073/pnas.1604850113 Esser et al.
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perform a convolutional filtering of the input or a prior layer
(Fig. 1A). Neurons within a layer are arranged in two spatial
dimensions, corresponding to shifts in the convolution filter, and
one feature dimension, corresponding to different filters. Each
neuron computes a summed weighted input, s, as

s=
X
i, j

X
f

xi,j,f wi,j,f , [1]

where x= fxi,j,fg are the neuron’s input pixels or neurons,
w= fwi,j,fg are the filter weights, i, j are over the topographic
dimensions, and f is over the feature dimension or input chan-
nels. Batch normalization (24) can be used to zero center s and
normalize its standard deviation to 1, following

r=
s− μ

σ + e
+ b, [2]

where r is the filter response, b is a bias term, e= 10−4 provides
numerical stability, and μ and σ are the mean and standard
deviation of s computed per filter using all topographic loca-
tions and examples in a data batch during training, or using the
entire training set during inference. Final neuron output is
computed by applying a nonlinear activation function to the
filter response, typically a rectified linear unit that sets negative
values to 0 (25). In a common scheme, features in the last layer
are each assigned a label—such as prediction class—and vote to
formulate network output (7).
Deep networks are trained using the backpropagation

learning rule (1). This procedure involves iteratively (i) com-
puting the network’s response to a batch of training examples in
a forward pass, (ii) computing the error between the network’s
output and the desired output, (iii) using the chain rule to
compute the error gradient at each synapse in a backward pass,
and (iv) making a small change to each weight along this gra-
dient so as to reduce error.

TrueNorth. A TrueNorth chip consists of a network of neuro-
synaptic cores with programmable connectivity, synapses, and
neuron parameters (Fig. 1B). Connectivity between neurons
follows a blockwise scheme: each neuron can connect to one
input line of any core in the system, and from there to any

neuron on that core through local synapses. All communication
to-, from-, and within-chip is performed using spikes.
TrueNorth neurons use a variant of an integrate-and-fire

model with 23 configurable parameters where a neuron’s state
variable, V ðtÞ, updates each tick, t—typically at 1,000 ticks/s,
although higher rates are possible—according to

V ðt+ 1Þ=V ðtÞ+
X
i

x̂iðtÞwi +L, [3]

where x̂ðtÞ= fx̂ig are the neuron’s spiking inputs, w= fwig are
its corresponding weights, L is its leak chosen from f−255,
− 254, . . . , 255g, and i is over its inputs. If V ðtÞ is greater than or
equal to a threshold θ, the neuron emits a spike and resets using
one of several reset modes, including resetting to 0. If V ðtÞ is below
a lower bound, it can be configured to snap to that bound.
Synapses have individually configurable on/off states and have a

strength assigned by look-up table. Specifically, each neuron has a
four-entry table parameterized with values in the range f−255,
− 254, . . . , 255g, each input line to a core is assigned an input type of
1, 2, 3, or 4, and each synapse then determines its strength by using the
input type on its source side to index into the table of the neuron on its
target side.* In this work, we only use two input types, corresponding
to synapse strengths of −1 and 1, described in the next section.

Mapping Deep Convolutional Networks to TrueNorth. By appropri-
ately designing the structure, neurons, network input, and weights
of convolutional networks during training, it is possible to effi-
ciently map those networks to neuromorphic hardware.
Structure. Network structure is mapped by partitioning each layer
into 1 or more equally sized groups along the feature dimension,†

where each group applies its filters to a different, nonoverlapping,
equally sized subset of layer input features. Layers are designed such
that the total filter size (rows × columns × features) of each group is
less than or equal to the number of input lines available per core,
and the number of output features is less than or equal to the
number of neurons per core. This arrangement allows one group’s
features, filters, and filter support region to be implemented using
one core’s neurons, synapses, and input lines, respectively (Fig. 1B).
Total filter size was further limited to 128 here, to support trinary
synapses, described below. For efficiency, multiple topographic lo-
cations for the same group can be implemented on the same core.
For example, by delivering a 4× 4× 8 region of the input space to a
single core, that core can be used to implement overlapping filters of
size 3× 3× 8 for four topographic locations.
Where filters implemented on different cores are applied to

overlapping regions of the input space, the corresponding input
neurons must target multiple cores, which is not explicitly sup-
ported by TrueNorth. In such instances, multiple neurons on the

Fig. 2. Dataset samples. (A) CIFAR10 examples of airplane and automobile.
(B) SVHN examples of the digits 4 and 7. (C) GTSRB examples of the German
traffic signs for priority road and ahead only. (D) Flickr-Logos32 examples of
corporate logos for FedEx and Texaco. (E) VAD example showing voice ac-
tivity (red box) and no voice activity at 0 dB SNR. (F) TIMIT examples of the
phonemes pcl, p, l, ah, z (red box), en, l, and ix.

Fig. 3. Each row shows an example image from CIFAR10 (column 1) and the
corresponding output of 12 typical transduction filters (columns 2–13).

*It should be noted that our approach can easily be adapted to hardware with other
synaptic representation schemes.

†Feature groups were originally used by AlexNet (25), which split the network to run on
two parallel GPUs during training. The use of grouping is expanded upon considerably in
this work.
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same core are configured with identical synapses and parameters
(and thus will have matching output), allowing distribution of the
same data to multiple targets. If insufficient neurons are available
on the same core, a feature can be “split” by connecting it to a core
with multiple neurons configured to spike whenever they receive a
spike from that feature. Neurons used in either duplication scheme
are referred to here as copies.
Neurons. To match the use of spikes in hardware, we use a binary
representation scheme for data throughout the network.‡ Neu-
rons in the convolutional network use the activation function

y=
�
1 if   r≥ 0,
0 otherwise, [4]

where y is neuron output and r is the neuron filter response (Eq. 2).
By configuring TrueNorth neurons such that (i) L= Øbðσ + eÞ− μe,
where L is the leak from Eq. 3 and the remaining variables are the
normalization terms from Eq. 2, which are computed from training
data offline, (ii) threshold (θ in Eq. 2) is 1, (iii) reset is to 0 after
spiking, and (iv) the lower bound on the membrane potential is 0,
their behavior exactly matches that in Eq. 3 (Fig. 1C). Conditions iii
and iv ensure that V ðtÞ is 0 at the beginning of each image pre-
sentation, allowing for one classification per tick using pipelining.
Network input.Network inputs are typically represented with multibit
channels [for example, eight-bit red, green, and blue (RGB) chan-
nels]. Directly converting the state of each bit into a spike would
result in an unnatural neural encoding because each bit represents a
different value (for example, the most-significant-bit spike would
carry a weight of 128 in an eight-bit scheme). Here, we avoid this
awkward encoding altogether by converting the high precision input
into a spiking representation using convolution filters with the bi-
nary output activation function described in Eq. 4. This process is
akin to the transduction that takes place in biological sensory or-
gans, such as the conversion of brightness levels into single spikes
representing spatial luminance gradients in the retina.
Weights. Although TrueNorth does not directly support trinary
weights, they can be simulated by using neuron copies such that a
feature’s output is delivered in pairs to its target cores. One
member of the pair is assigned input type 1, which corresponds to a
+1 in every neuron’s lookup table, and the second input type 2,
which corresponds to a −1. By turning on neither, one, or the
other of the corresponding synaptic connections, a weight of 0, +1,
or −1 can be created (Fig. 1D). To allow us to map into this

representation, we restrict synaptic weights in the convolutional
network to these same trinary values.
Training. Training was performed using standard backpropagation
with batch normalization (24), incorporating the activation function
and constraints on receptive field sizes using groups described above,
and using an approximate neuron derivative, weight update with
hysteresis, and spike sparsity pressure. Details of network initializa-
tion and training are provided in the SI Appendix, Algorithms 1 and 2.
As the binary-valued neuron used here has a derivative of∞ at 0,

and 0 everywhere else, which is not amenable to backpropagation,
we instead approximate its derivative as being 1 at 0 and linearly
decaying to 0 in the positive and negative direction according to

∂y
∂r

≈maxð0,1− jrjÞ, [5]

where r is the filter response, and y is the neuron output. Weight
updates are applied to a high precision hidden value, wh, which is
bounded in the range −1 to 1 by clipping, and mapped to the trinary
value used for the forward and backward pass by rounding with
hysteresis according to

wðtÞ=

8>><
>>:

− 1 if   whðtÞ≤ − 0.5− h,
0 if   whðtÞ≥ − 0.5+ h⋁whðtÞ≤ 0.5− h,
1 if   whðtÞ≥ 0.5+ h,
wðt− 1Þ otherwise,

[6]

where h is a hysteresis parameter set to 0.1 here.§ Hysteresis prevents
weights from rapidly oscillating between integer values if the corre-
sponding hidden weight is near −0.5 or 0.5. The hidden weights
allows synapses to flip between discrete states based on subtle dif-
ferences in the relative amplitude of error gradients measured across
multiple training batches.
We use standard heuristics for training, including momentum

(0.9), weight decay (10−7), and decreasing learning rate (dropping by
10× twice during training). We further use a spike sparsity pressure
by adding γ 1

2

P
�y2 to the cost function, where �y is average feature

activation, the summation is over all features in the network, and γ is
a parameter, set to 10−4 here. The sparsity pressure serves as a
regularizer and to reduce spike traffic (and thus energy consump-
tion) during deployment.
Training was performed offline on conventional GPUs, using

a library of custom training layers built on functions from the
MatConvNet toolbox (18). Network specification and training com-
plexity using these layers is on par with standard deep learning.

Table 3. Summary of results

Dataset

State of the art
TrueNorth best

accuracy TrueNorth 1 chip

Approach Accuracy Accuracy #cores Accuracy #cores FPS mW FPS/W

CIFAR10 CNN (11) 91.73% 89.32% 31492 83.41% 4042 1249 204.4 6108.6
CIFAR100 CNN (34) 65.43% 65.48% 31492 55.64% 4042 1526 207.8 7343.7
SVHN CNN (34) 98.08% 97.46% 31492 96.66% 4042 2526 256.5 9849.9
GTSRB CNN (35) 99.46% 97.21% 31492 96.50% 4042 1615 200.6 8051.8
LOGO32 CNN 93.70% 90.39% 13606 85.70% 3236 1775 171.7 10335.5
VAD MLP (36) 95.00% 97.00% 1758 95.42% 423 1539 26.1 59010.7
TIMIT Class. HGMM (37) 83.30% 82.18% 8802 79.16% 1943 2610 142.6 18300.1
TIMIT Frames BLSTM (38) 72.10% 73.46% 20038 71.17% 2476 2107 165.9 12698.0

The network for LOGO32 was an internal implementation. BLSTM, bidirectional long short-term memory; CNN, convolutional neural network; FPS, frames/
second; FPS/W, fames/second per Watt; HGMM, hierarchical Gaussianmixture model; MLP, multilayer perceptron. Accuracy of TrueNorth networks is shown in bold.

‡Schemes that use higher precision are possible, such as using the number of spikes
generated in a given time window to represent data (a rate code). However, we ob-
served the best accuracy for a given energy budget by using the binary scheme
described here.

§This rule is similar to the recent results from BinaryNet (16), but was developed inde-
pendently here in this work. Our specific neuron derivative and use of hysteresis
are unique.
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Deployment. The parameters learned through training are mapped to
hardware using reusable, composable hardware description functions
called corelets (19). The corelets created for this work automatically
compile the learned network parameters, which are independent of
any neuromorphic platform, into a platform-specific hardware con-
figuration file that can directly program TrueNorth chips.

Results
We applied our approach to eight image and audio benchmarks
using five network structures that require 0.5, 1, 2, 4, or 8
TrueNorth chips{ (Tables 1 and 2 and Fig. 2). Testing was per-
formed at one classification per hardware tick.

Networks. Three layer configurations were especially useful in this
work, although our approach supports a variety of other parame-
terizations. First, spatial filter layers use patch size 3× 3× 8 and
stride 1, allowing placement of four topographic locations per core.
Second, network-in-network layers (7) use patch size 1× 1× 128
and stride of 1, allowing each filter to span a large portion of the
incoming feature space, thereby helping to maintain network in-
tegration. Finally, pooling layers use standard convolution layers
(32) with patch size 2× 2× 32 and stride 2, thereby resulting in
nonoverlapping patches that reduce the need for neuron copies.
We found that using up to 16 channels for the transduction

layer (Fig. 3) gave good performance at a low bandwidth. For
multichip networks, we used additional channels, presupposing
additional bandwidth in larger systems. As smaller networks re-
quired less regularization, weight decay was not used for net-
works smaller than four chips, and spike sparsity pressure was
not used for networks half chip size or less.

Hardware. To characterize performance, all networks that fit on a
single chip were run in TrueNorth hardware. Multichip networks
require tools for efficient core placement to maximize the frac-
tion of traffic routed on-chip rather than between chips, as
intrachip bandwidth is higher than interchip bandwidth. As such
tools are presently undergoing development, we chose to run

multichip networks in simulation (33). In all cases, the first
convolutional layer (the transduction layer) was computed off
chip, in the process converting the multivalued input into a bi-
nary representation. The corresponding data were then delivered
to the chip using spike packets sent over a custom asynchronous
link (6). Single-chip classification accuracy and throughput were
measured on the NS1e development board (Fig. 1B), but power was
measured on a separate NS1t test and characterization board—
using the same supply voltage of 1.0 V on both boards—because the
current NS1e board is not instrumented to measure power and the
NS1t board is not designed for high throughput. Total TrueNorth
power is the sum of (i) leakage power, computed by measuring idle
power on NS1t and scaling by the fraction of the chip’s cores used
by the network, and (ii) active power, computed by measuring total
power during classification on NS1t, subtracting idle power, and
scaling by the classification throughput (FPS) measured on NS1e.#

Our focus was to characterize operation on the TrueNorth chip as a
component in a future embedded system. Such a system will
also need to consider capabilities and energy requirements of
sensors, transduction, and off-chip communication, which requires
hardware choices that are application specific and are not
considered here.

Performance. Table 3 and Fig. 4 show our results for all eight
datasets and a comparison with state-of-the-art approaches, with
measured power and classifications per energy (FPS per Watt)
reported for single-chip networks. It is known that augmenting
training data through manipulations such as mirroring can im-
prove scores on test data, but this adds complexity to the overall
training process. To maintain focus on the algorithm presented
here, we do not augment our training set and therefore compare
our results to other works that also do not use data augmentation.
Our experiments show that for almost all of the benchmarks, a
single-chip network is sufficient to come within a few percent of
state-of-the-art accuracy. Increasing to up to eight chips improved
accuracy by several percentage points, and in the case of the
voice activity detection (VAD) dataset, surpassed state-of-the-art
performance.

Discussion
Our work demonstrates that the structural and operational dif-
ferences between neuromorphic computing and deep learning
are not fundamental and points to the richness of neural network
constructs and the adaptability of backpropagation. This effort
marks an important step toward a new generation of applications
based on embedded neural networks.
These results help to validate the neuromorphic approach,

which is to provide an efficient yet flexible substrate for spiking
neural networks, instead of targeting a single application or
network structure. Indeed, the specification for TrueNorth and a
prototype chip (39) were developed in 2011, before the recent
resurgence of convolutional networks in 2012 (25). Not only is
TrueNorth capable of implementing these convolutional net-
works, which it was not originally designed for, but it also sup-
ports a variety of connectivity patterns (feedback and lateral, as
well as feedforward) and can simultaneously implement a wide
range of other algorithms (6, 13, 15, 40–42). We envision running
multiple networks on the same TrueNorth chip, enabling com-
position of end-to-end systems encompassing saliency, classifi-
cation, and working memory. In this way, TrueNorth is notably
different from recently proposed hardware architectures such
as (43, 44), which are specifically designed to implement convolution
operations.
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Fig. 4. Accuracy of different sized networks running on one or more True-
North chips to perform inference on eight datasets. For comparison, accuracy of
state-of-the-art unconstrained approaches are shown as bold horizontal lines
(hardware resources used for these networks are not indicated).

{Additional network sizes for the audio datasets (VAD, TIMIT classification, TIMIT frames)
were created by adjusting features per layer or removing layers.

#Active energy per classification does not change as the chip’s tick runs faster or slower as
long as the voltage is the same (as in the experiments here) because the same number of
transistors switch independent of the tick duration.
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We see several avenues of potentially fruitful exploration for
future work. Several recent innovations in unconstrained deep
learning that may be of value for the neuromorphic domain include
deeply supervised networks (34) and modified gradient optimiza-
tion rules. The approach used here applies hardware constraints
from the beginning of training, that is, constrain-then-train, but
innovation may also come from constrain-while-train approaches,
where training initially begins in an unconstrained space, but
constraints are gradually introduced during training (12). Finally,

codesign between algorithms and future neuromorphic archi-
tectures promises even better accuracy and efficiency.
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